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The global demand for electrical energy has witnessed a substantial increase, presenting a challenge 
for power systems worldwide. In addition to technical considerations, the escalating issue of global 
warming has become a paramount concern in the planning studies of various sectors. The formulation 
and resolution of a single-objective non-linear optimization problem are carried out, considering 
different operational scenarios. Recent heuristic algorithms, including Particle Swarm Optimization 
(PSO), Cat Swarm Optimization (CSO), Teaching Learning Based Optimization (TLBO), Grey Wolf 
Optimization (GWO) and Chimp Optimization algorithm (ChOA) are employed to address the 
complexities associated with maximizing power output under partial shading conditions in solar PV 
systems. The inherent challenges of achieving MPPT under such conditions make conventional analytic 
approaches computationally intensive. Hence, this study leverages heuristic algorithms to optimize 
solar PV system performance, providing efficient solutions to the associated optimization problems. 
The current research work was performed on a test system using a MATLAB/SIMULINK environment 
and the results are presented and discussed. From the simulation results, it was found that ChOA 
have shown higher conversion efficiency of 99.63% with maximum power output of 525.13 W when 
compared to other optimization algorithms for the given shading pattern condition. Further, ChOA 
offers easy implementation and faster convergence, outperforming established methods in GMPP 
search by reducing power oscillations and achieving precise MPP convergence.

Keywords  Solar PV systems, Particle swarm optimization (PSO), Cat Swarm Optimization (CSO), Grey 
Wolf optimization (GWO), Teaching learning based optimization (TLBO), Chimp optimization algorithm 
(ChOA).
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 India is experiencing a surging demand for electricity due to a rapidly growing population, increasing smart 
city initiatives, and widespread use of electronic devices. This heightened demand raises concerns about 
elevated carbon emissions and atmospheric pollution. Globally, the energy demand has seen a significant 
uptick, prompting a shift towards renewable sources over the past two decades, renewable energy generation has 
witnessed rapid growth, constituting 26.3% of global energy consumption. Notably, hydroelectricity contributes 
15.8%, wind energy 5.3%, solar energy 2.7%, and the remaining 2.5% comes from other renewable sources 
like modern biomass, wave, tidal, and geothermal energy. Solar, Wind, and Biomass are some of the renewable 
energy sources abundantly available in nature.

Researchers have extensively investigated various techniques for MPPT from solar energy. Femia et al.1 
emphasized the efficiency and cost-effectiveness of the Perturb and Observe (P&O) method towards maximum 
harness of solar energy under partial shading conditions. Tofoli et al.2 conducted a comparative analysis 
found that P&O significantly increased extracted power and brought the operating point closer to the MPP. 
Selvamuthu kumaran et al.3 proposed a flexible step size MPP tracking system with efficient performance under 
uniform atmospheric conditions. Gil-Velasco and Aguilar-Castillo4 observed that P&O finds the MPP with less 
convergence time. Dileep et al.5 surveyed perturb and observe methods, categorizing them based on simplicity, 
implementation, cost, and convergence speed. Ram et al.6 found that P&O with fuzzy outperformed Fuzzy and a 
new delta P&O method under constant insolation levels. Kumar et al.7 proposed a superior minimal rule-based 
fuzzy logic control-based MPPT technique for solar tracking and it converges very fast with high conversion 
efficiency. Kofinas et al.8 examined the MPPT controller by the application of a novel neuron to tune ANN under 
stable weather conditions to harness maximum solar energy. Nagadurga et al.9 used the CSO based MPP tracking 
method under uniform irradiance conditions, highlighting faster and stable traced MPP. Liu et al.10 investigated 
the PSO for MPPT in PV systems across diverse operational scenarios. They have highlighted the advantageous 
features of the PSO technique, including its straightforward implementation, system independence, and 
improved efficiency.

Sree et al.11 studied PSO method for stored solar energy in photovoltaic systems and found that PSO achieves 
the maximum power point (MPP) with a shorter convergence time compared to other reported techniques. 
Angadi et al.12 explored performance improvements in solar PV systems by examining the effects of system 
parameters such as input capacitance and sampling time using the classic P&O MPPT method. Ram et al.13 
compared P&O with Fuzzy Logic and a new delta P&O method for MPPT tracking by evaluating design 
considerations, performance, and accuracy under constant insolation levels, and found that P&O with Fuzzy 
Logic offered better performance. Tajuddin et al.14 suggested the Differential Evolution technique for obtaining 
the maximum solar tracking under changing atmospheric conditions. Thangamani et al.15 also reported the 
application of differential algorithm for efficient solar tracking under partial shading conditions. Ramli et 
al.16 reviewed various methods for tracking the Maximum Power Point (MPP) under uniform and partially 
shaded conditions, including artificial intelligence, hybrid approaches, and other soft computing techniques and 
summarized the advantages of various tracking methods to enhance power output in solar PV systems under 
PSC. Dileep and Singh17 conducted a comprehensive study on soft computing methods like PSO and Ant Colony 
Optimization (ACO) for enhanced solar tracking by highlighting their utilization, strengths, and limitations. Li 
et al.18 studied a novel GMPP algorithm for higher solar harness with faster convergence rate under changing 
environmental conditions. Rezk et al.19 studied PSO and CS optimization techniques for maximizing power 
output from shaded solar photovoltaic panels, concluded that both PSO and CS techniques are effective in 
converging to the global optimum, with CS demonstrating a shorter tracking time than PSO in all considered 
shading patterns.

Nagadurga et al.20 used the TLBO algorithm for MPPT and found reduced current ripple and power 
oscillations under partial shading conditions. Gangwar et al.21 examined the CSO technique for maximum solar 
harness by using the panels in the form of Phyllotaxy and achieved higher solar energy tracking. Hegazy and 
Fathy22 conducted various simulation studies under shading patterns by applying PSO, FLC, and TLBO and the 
authors concluded that TLBO has shown enhanced performance with respect to solar tracking. Javed et al.23 used 
novel firefly algorithm under changing conditions and assessed the performance of the algorithm with PSO and 
stated that the firefly algorithm have shown better results under changing environmental conditions. Eltamay et 
al.24 studied the GWO technique with FLC to describe the best way to lower oscillations at the GMPP. Mukherjee 
and Mallick25 used a swarm-based metaheuristic, Levy Flight motivated Adaptive Particle Swarm Optimization 
(APSOLF) to achieve superior performance. Statistical analysis confirms APSOLF’s advantage over other state-
of-the-art methods, with MPPT tracking efficiency exceeding 99.8% and minimal settling time. Mukherjee and 
Mallick26 studied the control parameter-based self-adaptive particle swarm optimization (SAPSO) technique 
was introduced to resolve both MPPT and firing angle optimization (FAO) problems. From their simulated and 
real time validated results indicated that SAPSO coulbe be one of the stops solving approach to maximize the 
MPPT with greater accuracy. Kumar27 analyzed the load demand and electricity cost from the power grid to 
get optimum design of MG at specified test locations. Further, they revealed that significant savings of 30.88% 
and 49.99% of the rolling cost when compared with Fuzzy Logic and mixed-integer linear programming-based 
energy management system respectively. Alaraj28 examined the hybrid grey wolf optimizer (HGWO) for MPPT. 
The authors found to be better as it has a maximum efficiency of 94.30% and a minimum convergence factor 
of 0.20 when compared with other techniques under varying conditions for different topologies. Kumar29 used 
the adaptive neuro fuzzy inference system (ANFIS)-based new algorithm for maximum power point tracking 
(MPPT) has been developed and implemented to track MPP in the standalone photovoltaic system (PV). From 
their study, they reported that percentage error, rise time and voltage fluctuations have enhanced when compared 
with incremental conductance method.
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The comparison of various advanced Maximum Power Point Tracking (MPPT) methods is outlined in 
Table  1, focusing primarily on soft computing techniques. This comparison highlights key differences based 
on several criteria. Additionally, it is important to note that the results presented in Table 1 have been validated 
through different testing environments, including both experimental and simulation-based evaluations.

Literature surveys highlight their tendency to get stuck in local peaks, especially under shading conditions. 
The optimization of algorithm parameters and exploration capabilities emerges as critical factors influencing 
the effectiveness of these optimization approaches. When the complexity of the problem is enhanced, then 
the existing techniques in the literature are not meeting the research objectives. To address these challenges, 
the study introduces the Chimp Optimization Algorithm (ChOA) which is specifically designed for GMPP to 
harness solar energy under fluctuating weather conditions. A primary contribution of this work is the analysis 
of ChOA’s performance to enhance maximum solar energy under partial shading conditions. While previous 
research has proposed various techniques to enhance the tracking rate of solar PV systems, some key issues 
persist and warrant further investigation. This study aims to fill the research gap by developing and applying 
the Chimp Optimization Algorithm for the MPPT problem. In real-world scenarios, the Chaos Optimization 
Algorithm (ChOA) competes well with established methods like Grey Wolf Optimizer (GWO) and Particle 
Swarm Optimization (PSO). Using chaotic maps, ChOA improves exploration and exploitation balance, offering 
better global search and reducing the likelihood of getting stuck in local optima. It often converges faster than 
PSO and performs comparably to GWO in complex, dynamic problems. However, ChOA’s success depends on 
the specific optimization problem and the trade-off between exploration and stability.

The development of the Chimp Optimization Algorithm (ChOA) addresses significant research gaps in the 
field of optimization, particularly for challenging problems such as partially shaded photovoltaic (PV) systems. 
Existing algorithms like Particle Swarm Optimization (PSO), Cat Swarm Optimization (CSO), and Teaching-
Learning-Based Optimization (TLBO) have shown effectiveness in various scenarios but face inherent limitations 
when applied to highly complex and nonlinear optimization landscapes. One critical issue is their susceptibility 
to premature convergence, often resulting in suboptimal solutions due to entrapment in local optima, especially 
in highly multimodal search spaces typical of partially shaded PV systems. PSO, for instance, relies on a velocity 
update mechanism that can cause stagnation near local optima. Similarly, CSO often struggles with maintaining 
adequate exploration in intricate landscapes, leading to reduced solution diversity. While TLBO is recognized 
for its robustness, it lacks a leader-follower dynamic that is crucial for navigating irregular and dynamic 
optimization environments. ChOA bridges these gaps by introducing an innovative framework inspired by the 
intelligent hunting behavior of chimps. Its design incorporates unique mechanisms such as social hierarchy, 
cooperative behavior, and adaptive strategies, which collectively enhance both exploration and exploitation 
capabilities. This balance between diversification and intensification enables ChOA to efficiently escape local 
optima and achieve superior global search performance. Compared to traditional methods, ChOA demonstrates 
improved convergence speed, accuracy, and stability, making it a highly effective solution for optimizing the 
nonlinear and complex characteristics of partially shaded PV systems. By addressing the limitations of existing 
algorithms, ChOA establishes itself as a versatile and adaptive tool, filling a critical void in optimization research.

Maximum power point tracking (MPPT) techniques
There are various MPPT techniques accessible to date and more research is ongoing to develop more robust 
MPPT techniques. Based on the structure of the algorithms, the MPPT techniques are classified into (i) 
Conventional (ii) AI Techniques and (iii) Soft computing Techniques. Conventional methods are used mostly 
because they have a simple and efficient tracking system. Most conventional algorithms can work efficiently 
when weather conditions are constant and but they fail when working under variable environmental conditions.

Mathematical model of PV cell
The basic operating principle of a solar cell is the photo-voltaic effect by which solar irradiation is converted into 
electrical energy. The equivalent circuit of the solar cell with the single-diode model is shown in Fig. 1, which is 
simple and more accurate.

The equation for the solar panel output current is as follows

	
I = IP V − ID − VP V + I ∗ RS

RP
� (1)

Parameter ANN PSO GA FLC CSO GWO

Tracking speed Average Fast Fast Average Very fast Very fast

Conversion efficiency Low High High Low High High

Complexity High High High High High High

Cost High High High High High High

Sensors V, I, G V, I V, I V, I V, I V, I

Periodic tuning Yes Yes No No No No

Table 1.  Comparison of performance metrics for different advanced MPPT methods.
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I0 Can be written in a simplified form as
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where

	
Vt = KT

q
� (6)

The symbols used for this model are defined as,

IP V 	 Photocurrent in Amp
ID 	 Diode current in Amp
I0	 Saturation current of the diode in Ma
VT 	 PV array thermal voltage in volts
q	 Electron charge in Coulombs
k	 Boltzmann constant
Rsh	 Resistance due to recombination of charge carriers in Ω
Rs	 Series resistance in Ω
η	 Diode ideality factor
Eg	 Band gap energy of the semiconductor material
I0−STC	 Nominal saturation current at STC in Amps
Ki	 Coefficient of short circuit current
G	 The irradiance of the solar rays falling on the PV surface in KW/m2

KV  	 Open circuit voltage coefficient
∆T 	 T-TST C

Fig. 1.  Equivalent circuit of solar cell.
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PSO algorithm
PSO.is a highly effective speculative technique based on the bird’s movement. Among many heuristic approaches, 
the PSO algorithm is highly adopted due to its simplicity as well as effectiveness. The basic motivation behind this 
invention is the social behaviour simulation of bird flocking. PSO employs multiple particles to form a swarm 
that traverses the search space, collaboratively determining the optimal global solution. The PSO is applied to 
compute the optimization problem, thereby making the candidate solution precise and of better quality. The 
optimization of a problem with PSO is based on the population size of the candidate size. MPPT of PV strings 
under shading and the schematic implementation is shown in Fig. 2.

Case studies
PV string performance was assessed under two partial shading patterns using a PSO-based MPPT controller. 
The simulation adjusted irradiation for four series-connected PV modules (Fig. 3) at a constant temperature of 
25 °C. The Specifications of KC200GT PV module along with DC-DC Boost Converter is given in Table 2.

In optimization-based tracking approaches, parameters like C1 and C2 in the PSO algorithm influence 
performance. These settings are detailed in Table 3.

Case 1:  For this case, the irradiation levels follow pattern-1 on each module. The P-V and P-I plots of the PV 
strings for this partial shading pattern are shown in Fig. 4. Three peaks are present in the plots, indicating local 
MPP and global MPP points. The GMPP is 544.1 W, with a voltage of 114.008 V and a current of 4.7771 A at 
the GMPP.

PSO algorithm begins tracking with duty ratios (0, 0.2, 0.6, and 0.8) to explore the P-V plot. The process continues 
until the halting criterion is met. Figure 5 shows simulation results of power, voltage, and current using PSO for 
maximum power extraction in the first shading pattern.

It is observed from the results shown in Fig.  5, the values of power output using the PSO technique is 
520.03 W. The statistical results of the PSO optimization algorithm are summarized in Table 4.

Fig. 2.  PV system with partial shading and MPPT controller using PSO.
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Case 2:  This case considers shading each module as in pattern-2. The PV and PI graph for the current pattern 
is shown in Fig. 6. In this shading pattern, GMPP value is 440 W, the voltage value at GMPP is 111.3816 V, and 
the Current value at GMPP is 4.0515 A.

Figure 3’s Simulink model is employed for pattern 2, the resetting the search space over the P-V characteristics 
(Fig. 6) to track GMPP under partial shading. Figure 7 displays results of voltage, current, and power using the 
PSO approach.

In particular, the solar PV system power output converges at peak power point with subjective fluctuations 
from simulation results and the output power obtained from the PSO is 426.41  W. Table  5 represents the 
statistical results of pattern 2 of PSO algorithm.

Use of CSO algorithm based MPPT controller for PV module
In population-based search optimization methods, maintaining a significantly high diversity is crucial during 
the early stages of the search. This enables the exploration of the entire search space effectively. Conversely, as 

Specifications Range

Weighting factor (w) 0.9–1.2

Design variables 1

Iteration 10

Learning factors 4

Probability of search ratio 0.02

Table 3.  PSO algorithm tuning parameter.

 

Details of KC200GT PV DC-DC boost converter

Parameter Value Parameter Value

Number of cells 54 Input Inductance (L1) 10 mH

Voc (V) 32.9 V Outside capacitance (Cout) 333 µF

I sc (A) 8.21 A Switching frequency 25 kHz

VMPP (W) 26.3 V

IMPP (W) 7.61 A

PMPP (W) 200.143 W

Table 2.  Specifications of KC200GT PV module along with DC-DC Boost Converter.

 

Fig. 3.  Simulation circuit model for PSO algorithm (4 series-KC200GT PV module).
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the optimization algorithm progresses towards convergence and approaches the optimal solution, fine-tuning 
becomes essential for efficient identification of the global optima. The Cat Swarm Optimization (CSO) algorithm, 
a naturally inspired meta-heuristic, has established itself as a benchmark in solving optimization problems across 
various engineering fields. The schematic representation of the CSO algorithm presented in Fig. 8.

Seeking mode and Tracing mode are the two distinct modes, in which this algorithm interprets the cat 
behaviour. Virtual cats are then maneuverer in the search space based on these behaviours. The participation of 
cats in each iteration of seeking and tracing modes is determined by a predefined ratio known as the mixture ratio 
(MR). In the algorithm, the tracing mode, where cats exhibit performance in pursuing a target, is particularly 

Shading pattern type GMPP (W) Algorithm VPV (V) IPV (A) PPV (W) V0 (V) I0(A) P0 (W) Conversion efficiency (%)

1 544.129 PSO 130.12 3.86 502.56 161.57 3.23 520.03 95.57

Table 4.  Statistical results of PSO algorithms for Pattern1.

 

Fig. 5.  Pattern1 simulation results of voltage, current and power using PSO.

 

Fig. 4.  P-V and P-I curves under first shading patterns stroked on the PV module respectively.
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instrumental. Consequently, it can be inferred that an optimal mixture ratio is a subtle parameter that needs to 
be set judiciously. Figure 9 indicates the flowchart of CSO algorithm.

CSO technique is used to extract the maximum power under partial shading conditions and the results are 
compared with PSO.

The simulation model circuit for KC200GT PV module is shown in Fig.  10. CSO algorithm parameters 
include NP, MR, SRD, and w, with additional SMP, C, CSTD, and NPSTD values. Choosing the population size 

Shading Pattern GMPP(W) Algorithm VPV(V) IPV(A) PPV( W) V0 (V) I0 (A) P0 (W) Conversion Efficiency (%)

2 440.8 PSO 133.4 3.2 428.73 145.85 2.91 426.41 96.72

Table 5.  Statistical results of PSO algorithm for Pattern2.

 

Fig. 7.  Pattern 2 simulation results of voltage, current and power using PSO.

 

Fig. 6.  Solar power characteristics of PV module under changing conditions.
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in CSO balances accuracy and convergence speed: larger populations enhance accuracy but slow convergence, 
while smaller sizes track faster with higher local optima risk. Table 6 details CSO algorithm tuning parameters.

Case studies
Case 1:  This section discusses irradiance levels in Pattern1. Under this shading condition, GMPP voltage and 
current are 114.008 V and 4.7771 A, yielding 544.129 W. CSO algorithm begins tracking using duty ratios (0, 0.2, 
0.6, and 0.8) for boost converter to explore and cover the entire P-V plot. A similar procedure is repeated until 
the halting criterion is met. The simulation results of Output power, voltage, and current employing the CSO 
method for extracting maximum power under the first shading pattern are shown in Fig. 11.
Figure 11 demonstrates that the PV array output power achieved using CSO is 521.41 W. The simulation graph 
reveals that CSO offers faster tracking compared to PSO, with rapid dissolution of sustained oscillations. CSO 
technique takes only 0.05 s and PSO approach take 0.085 s to attain 521.41 W and 520.03 W, respectively for the 
pattern 1. The statistical results comparison of CSO and PSO optimization algorithms are tabulated in Table 7 
for pattern 1.

Case 2:  For this shading pattern, global peak power (GMPP) is achieved at 440 W, the voltage corresponding 
to GMPP is 111.3816 V, and the Current value at GMPP is 4.0515 A. The same Simulink model utilized here 
by implementing CSO based MPPT controller for pattern 2. The results of output voltage, current, and power 
obtained using the CSO and PSO approaches are presented in Fig. 12.

The simulation result obtained from CSO during the second shading pattern shown in Fig.  12 shows less 
oscillation in power output during searching phase. The output power obtained from CSO is 434.50 W, while 
PSO yields 426.41 W. Table 8 compares statistical simulation results, highlighting higher power harnessing and 
conversion ratio with CSO over PSO.

Fig. 8.  PV system with partial shading and MPPT controller using CSO.
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Application of TLBO method MPPT controller for solar PV module
This approach explores the novel TLBO method for achieving maximum solar energy under shading conditions. 
TLBO is applied to maximize the MPP tracking of PV strings, as depicted in the schematic implementation 
shown in Fig. 13.

TLBO, a metaheuristic by Rao and Savsani30, mimics the teaching-learning process in classrooms. It uses 
teacher performance and student results as a basis for optimization. Here, students represent the population, 
subjects are controlled variables, and the algorithm operates in teaching and learning phases to optimize 
objective functions. Flowchart of TLBO method is shown in Fig. 14.

Case studies
A detailed schematic layout Simulink model by applying the TLBO algorithm is shown in Fig. 15.

To evaluate the TLBO algorithm for GMPP extraction under the same shading patterns, simulation results 
are compared with PSO and CSO methods. A quantitative analysis includes tracking speed, efficiency, and 
power. Tuned TLBO parameters are detailed in Table 9.

Fig. 9.  Flow chart interpreting the CSO algorithm.
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Case 1:  The GMPP voltage and current under this shading condition are 114.008 V and 4.7771 A, resulting in 
544.129 W. The TLBO algorithm initiates tracking by randomly assigning duty cycles to the boost converter, 
exploring the entire P-V plot. Figure 16 illustrates the power output tracked using TLBO for the solar PV string.

From the results, the PV array achieves 522.30  W using TLBO, identifying GMPP in just 0.05  s. TLBO 
demonstrates better performance over other algorithms. Table 10 compares optimization algorithms, showing 
TLBO achieving 522.30 W in 0.05 s, whereas CSO reaches 520.03 W in 0.085 s for pattern1.

Case 2:  This case is analyzed for pattern 2, a non-homogeneous irradiation pattern that produces two peaks in a 
P-V curve with a global peak and local peak located at 440.86 W and 389.24 W, respectively which describes that 
the pattern has two peaks existing with a significant difference between local and global peak values. The values 
of output voltage, current, and power obtained using the TLBO approach are presented in Fig. 17.

The simulation results obtained from TLBO show fewer oscillations during the search of maximum solar 
tracking under shading conditions. The performance comparison of different optimization techniques under 
the second shading pattern is tabulated in Table 11.

Use of GWO algorithm of MPPT controller for solar PV module
Grey wolves’ natural leadership inspires the GWO optimization technique for maximizing power from solar 
PV strings under partial shading (Fig. 18). GWO, inspired by grey wolves and chimps, offers advantages like 
parameter-free implementation, simplicity, and ease of programming compared to other evolutionary algorithms.

The GWO is one of the bio-inspired optimization algorithms which is inspired by both the social hierarchy 
and hunting strategy of grey wolves and chimps. The advantages of the GWO over other well-known 
evolutionary techniques include no requirement of algorithm-specific parameters for implementation, less 
complexity and simple programming, and easy implementation. The GWO technique models the leadership 

Parameter Value

Number of iterations 10

SRD 0.3

N 5

C 2

SM 5

MR 0.2

CDC 1

Table 6.  Specifications of CSO algorithm.

 

Fig. 10.  simulation model circuit for KC200GT PV module.
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Shading pattern GMPP (W) Algorithm VPV (V) IPV (A) PPV (W) V0 (V) I0 (A) P0 (W) Conversion efficiency (%)

2 440.869
CSO 135.62 3.252 438.64 147.166 2.962 434.508 98.56

PSO 133.477 3.212 428.73 145.857 2.917 426.416 96.73

Table 8.  Comparative assessment of various algorithms for Pattern2.

 

Fig. 12.  Pattern2 simulation results of voltage, current and power output using CSO.

 

Shading pattern GMPP (W) Algorithm VPV (V) IPV (A) PPV (W) V0 (V) I0 (A) P0 (W) Conversion efficiency (%)

1 544.129
CSO 123.14 4.101 505.0323 161.5715 3.2318 521.41 95.84

PSO 130.12 3.862 502.56 161.5715 3.2314 520.03 95.57

Table 7.  Statistical results of CSO algorithm for Pattern1.

 

Fig. 11.  Pattern1 simulation results of voltage, current and power output using CSO.
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Fig. 14.  Flowchart of TLBO Algorithm.

 

Fig. 13.  partially shaded PV system with TLBO Based MPPT controller.
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hierarchy and hunting behavior of grey wolves presented in Fig. 19. It includes alpha (α), beta (β), delta (δ), and 
omega (ω) wolves Alpha represents the fittest solution, followed by beta and delta, with omega representing 
other candidates. The flowchart of GWO technique is shown in Fig. 20.

Case studies
Figure  21 depicts the simulation circuit model for MPPT using GWO algorithm. Table  12 lists the tuning 
parameters for GWO algorithm.

A comprehensive comparison of the GWO technique with other swarm intelligence algorithms is conducted 
on a solar PV system using MATLAB/Simulink 2016a. A sampling time interval of 1 s ensures the system reaches 
steady-state conditions before reaching GMPP.

Case-1:   The output voltage, current, and power obtained using the GWO optimization technique for pattern 1 
are presented in Fig. 22 by using the specifications given in Table 11.

The GWO technique shows minimal oscillations during MPP tracking under shading conditions, demonstrating 
its ability to pursue global maximum power. Simulation results indicate the PV array achieves 527.44 W using 
GWO. Table 13 provides a qualitative analysis of maximum power extraction using various techniques.

Case-2:   In this scenario, pattern-2 is considered for analysis. It has three peaks in the P-V plot and forms a 
composite situation for getting the GMPP. The Simulink model is utilized for pattern 2 and the results of output 
voltage, current, and power obtained using the GWO approach are presented in Fig. 23.

The simulation results obtained from GWO show fewer oscillations were found when compared to other 
techniques. The simulation results of pattern 2 with different optimization techniques are presented in Table 14.

Use of ChOA approach for MPPT controller
Chimp Optimization Algorithm (ChOA) optimizes MPPT in fractional shading for solar PV systems. The 
network MPP from the solar PV module, delivering it efficiently to utility end. The application of ChOA in a 
partially shaded PV system is illustrated in Fig. 24.

Specification Value

Number of students (NP) 10

Number of Iterations 10

Random value(ri) 0 to 1

Teaching factor (TF) 1 or 2

Table 9.  Tuning parameters of TLBO algorithm.

 

Fig. 15.  Simulink model circuit (4 series connected KC200GT PV) by applying the TLBO algorithm.
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Fig. 17.  Pattern 2 simulation results of voltage, current and power output of TLBO algorithm.

 

Shading pattern GMPP (W) Algorithm VPV (V) IPV (A) PPV (W) V0 (V) I0 (A) P0 (W) Conversion efficiency (%)

1 544.129

TLBO 123.14 4.101 505.0323 159.77 3.217 522.30 95.98

CSO 123.14 4.101 505.0323 161.5715 3.2318 521.41 95.84

PSO 130.12 3.862 502.56 161.5715 3.2314 520.03 95.57

Table 10.  Different MPPT algorithms performance assessment for pattern1.

 

Fig. 16.  Pattern1 simulation results of voltage, current and power output of TLBO algorithm.
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Chimpanzee associations exhibit a fission-fusion dynamic, where individual roles remain constant over time. 
Each association, represented as an individual, performs specific functions that may evolve. The chimpanzee 
groups operate independently, with each member utilizing their unique skills for specialized tasks. The function 
of each chimp are classified as (i) Drivers (ii) Barriers (iii) Chasers (iv) Attackers. Drivers pursue prey without 
attempting to capture them, Barriers create obstacles in the escape route, Chasers swiftly pursue the prey, and 
Attackers focus on understanding the prey’s escape strategy.

Chimps may alter their roles during a hunt or maintain the same role throughout. Social incentives, such as 
support, sex, or grooming, drive chimps to participate in the hunt. Some chimps also seek “Social incentives” like 
humans, providing them with additional assets compared to other social predators. Sexual impulses may lead 
chimps to act chaotically in the final stages of the chase.

ChOA mathematical model
Hunting techniques consist of two phases like exploitation and exploration. The following equations are used for 
chasing and driving prey.

	 xChimp(t + 1) = xPrey (t) − a.D� (7)

Equations from (8) to (10) are designed to provide the values of a, m and C.

Fig. 18.  Partially shaded PV system with GWO based MPPT controller.

 

Shading pattern GMPP (W) Algorithm VPV (V) IPV (A) PPV (W) V0 (V) I0 (A) P0 (W) Conversion efficiency (%)

2 440.869

TLBO 135.52 3.253 438.63 148.205 2.925 435.88 98.86

CSO 135.52 3.253 438.63 147.165 2.962 434.50 98.55

PSO 133.477 3.212 428.73 145.857 2.917 426.41 96.72

Table 11.  Different MPPT algorithm for performance assessment of pattern 2.
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	 a = 2. f. r1 − f� (8)

	 C = 2.r2� (9)

	 m = Chaotic vector� (10)

The function f reduces nonlinearly from 2.5 to 0 during exploration and exploitation via iteration, using random 
vectors r_1 and r_2, and regulation vectors and C. D represents distance between elements, and the chaotic 
vector m aligns with chimp sexual motivation in the search process. Unlike traditional swarm intelligence, chimp 
optimization involves independent groups with diverse behaviours, mathematically modelled to revise f. Each 
group uses constant parameters, updating locally and globally. Mathematical model for dynamic coefficients 
vector (f) in various ChOA groups as shown in Fig. 25.

	(i)	 Phase of exploration.

During the attack phase, chimps employ various stages like chasing, blocking, driving to encircle the prey. 
Attackers typically manage the chase, while drivers, barriers, and chasers are intermittently involved. In the 
initial iteration, lacking knowledge of the prey’s optimal position, the attacker’s location becomes the assumed 
prey position. Another crucial ChOA parameter influencing the exploration process is C. This stochastic 
parameter enhances ChOA’s exploration, reducing the risk of being trapped in local optima. Continuous random 
values generated by C contribute to the exploration phase across iterations. The approach of attacking can be 
represented mathematically with the linear decrease off higher value of 2.5 to lower value of 0. The vector’s scope 
decreases similarly to that of f, defined as a random vector within the range of [−2f, 2f]. Each extension’s random 
value falls within [−1, 1], allowing a chimp’s placement at any position relative to the available space and prey 
condition. While the projected chasing and blocking mechanism, somewhat address exploration limits, there 
remains a risk of ChOA getting trapped in local minima. Impact of ‘a’ on updating chimp location is shown in 
Fig. 26.

	(ii)	 Chaotic maps.

Chimps’ chaotic behaviour aids in overcoming local optima issues and slows convergence in solving high-
dimensional engineering problems. Various chaotic maps have been employed in this study to enhance ChoA 
performance, introducing random behaviour, as depicted in the Fig. 27.

The focussed ChOA flow chart is presented in Fig. 28 with a schematic flowchart guiding the optimization 
process. Initially, the algorithm randomly selects a population of chimps organized into individual chimp groups. 
The positions of these chimps are evaluated by the objective function, and the ensuing steps are iteratively 
performed until the specified stopping criterion is reached. This study specifically employs ChOA to address the 
non-convex optimization challenge associated with MPPT. The above figure provides a comprehensive overview 
of the procedural steps involved in utilizing ChOA for MPPT problem-solving.

Case studies
Figure 29 depicts the Simulink setup for comprehensive research on solar PV strings under various shading 
conditions using ChOA algorithm. Table 15 outlines the tuning parameters for ChOA.

Fig. 19.  Hierarchy of different grey wolf groups.
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Case-1:  This case focuses on Pattern-1, detailing irradiance levels on modules and presenting P-V, P-I charac-
teristics. For this shading condition, the GMPP voltage and current are 114 V and 4.78 A at 544 W. The output 
voltage, current, and power obtained using ChOA optimization technique for pattern 1 are presented in Fig. 30.

Chimp Optimization demonstrates smoother MPP search with minimal oscillations in solar PV module power 
output under shading conditions. ChOA converges rapidly within seconds, contrasting with GWO’s higher 
average convergence time. Both ChOA and GWO excel in pursuing GWPP under partial shading conditions. 

Fig. 20.  Flow chart of GWO technique.
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Fig. 22.  Pattern1 simulation results of voltage, current and power using GWO algorithm.

 

Specifications Value

Number of wolfs 10

Count iterations 10

Negative limit -[5

Positive limit 5

Table 12.  Tuning parameters of GWO algorithm.

 

Fig. 21.  KC200GT simulation model circuit for MPPT by using GWO algorithm.
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The simulation shows GWO yields 527.44 W, whereas ChOA achieves 531.198 W from the PV array. Detailed 
qualitative analysis is summarized in Table 16.

Case- 2:  Examining pattern-2 in this context, Fig. 31 indicates that the use of GWO for MPP tracking intro-
duces significant disturbances and transients in output voltage and power curves during climatic changes. The 
proposed ChOA method proves to be a more efficient solution because of excellent damping of oscillations over 
diverse fluctuating conditions. The simulation results of pattern 2 with different optimization techniques are 
tabulated in Table 17.

Case-3:  In this case study, pattern-3 is analysed, Pattern 3 ChOA simulation outputs are presented in Fig. 32. 
Notably, four peaks are observed, with LMPP at 500 W and GMPP at 513.3 W. The voltage is 81.63 V and 6.21 A 
of current at GMPP, showing a close alignment with the other peaks. Pattern 3 performance of MPPT controller 
is shown in Table 18.

Pseudo code for ChOA
The ChOA (Chimp Optimization Algorithm) is a metaheuristic optimization algorithm inspired by the behavior 
and intelligence of chimpanzees. It involves processes such as chasing, attacking, and social learning to solve 
optimization problems. The pseudocode representation of the ChOA technique is presented below.

Shading pattern GMPP (W) Algorithm VPV (V) IPV (A) PPV (W) V0 (V) I0 (A) P0 (W) Conversion efficiency (%)

Case-2 440.869

GWO 116.57 3.776 440.169 144.7595 2.872 438.61 99.64

TLBO 135.52 3.253 438.63 148.205 2.925 435.88 98.86

CSO 135.52 3.253 438.63 147.165 2.9628 434.5064 98.55

PSO 133.477 3.212 428.73 145.8579 2.9172 426.41 96.72

Table 14.  Comparative performance of various algorithms for pattern 2.

 

Fig. 23.  Pattern2 simulation results of voltage, current and power using GWO algorithm.

 

Shading pattern GMPP (W) Algorithm VPV (V) IPV (A) PPV (W) V0 (V) I0 (A) P0 (W) Conversion efficiency (%)

Case-1 544.129

GWO 132.018 4.061 543.2 161.23 3.2398 527.44 97.09

TLBO 123.14 4.101 505.0323 159.77 3.217 522.30 95.98

CSO 123.14 4.101 505.0323 161.5715 3.2318 521.41 95.84

PSO 130.12 3.862 502.56 161.5715 3.2314 520.03 95.57

Table 13.  Comparative assessment of MPPT techniques for Pattern1.
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•	 Initialize the population of chimpanzees (N) randomly in the search space.
•	 Define the maximum number of iterations (Max_Iter) and other parameters like coefficients and weight fac-

tors.
•	 Evaluate the fitness of each chimpanzee in the population.

Fig. 25.  Mathematical model for dynamic coefficients vector (f) in various ChOA groups.

 

Fig. 24.  PV system with partial shading and MPPT controller using ChOA.
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•	 Identify the best solution (Elite) in the population based on fitness.
•	 Set the iteration counter: Iter = 1.
•	 While Iter ≤ Max_Iter:

	 a.	 Update the coefficients controlling exploration and exploitation:

	 i.	 Update A, C, and other dynamic factors based on the iteration count.

	 b.	 For each chimpanzee in the population:

	 i.	 Update the position using the ChOA position update formula:

•	 Calculate the positions based on the chasing and attacking mechanism.
•	 Incorporate social learning by considering the Elite solution and random interactions.

	 ii.	 Ensure the new position is within the search space bounds.

	 iii.	 Evaluate the fitness of the updated positions.
	 iv.	 Update the Elite solution if a better solution is found.

Fig. 27.  Chaotic random behaviour of chimps.

 

Fig. 26.  Impact of ‘a’ on updating chimp locations.
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	 v.	 Adjust parameters for balancing exploration and exploitation.

•	 Increment the iteration counter: Iter = Iter + 1.
•	 End While.
•	 Return the best solution (Elite) as the final optimized result.

Performance analysis of the metaheuristic techniques
Metaheuristic techniques are inherently stochastic, meaning their performance varies across different runs when 
searching for the optimal solution. To evaluate the suitability and effectiveness of the proposed algorithm, it has 
been tested on a set of benchmark functions. The ChOA strategy used fixed-dimension benchmark functions 
s, which are widely utilized by researchers. The functions listed in Table 19 are multimodal, featuring multiple 
local optima and one unique global optimum, making them ideal for assessing the exploration capability of the 
metaheuristic method.

The statistical analysis of the proposed strategy was conducted on the selected fixed-dimension multimodal 
benchmark functions, as shown in Table 19. The proposed method is compared with other recent strategies 
using similar algorithm parameters: a group size of 30 and a total of 100 iterations. Table 19 presents the mean, 
standard deviation, worst, and best optimum values obtained over 25 runs.

	
FMean =

∑N

i=1 fi

N
� (11)

Fig. 28.  ChOA flowchart.
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FSD =

∑N

i=1

(
(fi − Fmean)2)

N
� (12)

Table 20 shows that variations of the ChOA strategy outperform the base algorithm in most cases, leading to 
better results across various functions. Figure 33 illustrates the comparison of convergence curves for different 
heuristic methods on static benchmark functions. The 2D representation of the three-dimensional parameter 
space shows the search history projected onto the x1 and x2 axes, highlighting fitness values and convergence 
towards different optima, including a global optimum. The proposed strategies demonstrate improved 
performance by avoiding local optima across multiple runs.

Apart from the ChOA, recently few algorithms are examined for the efficient tracking of solar energy. Gudarzi 
et al.31. Comprehensive Learning Particle Swarm Optimization (CLPSO) has providing insights into their 
relative performance in terms of cost reduction, computational efficiency, and solution accuracy. Comprehensive 
Learning Particle Swarm Optimization (CLPSO) outperforms standard PSO, MPSO, and GEPSO in reducing 
investment costs by 53.34% for standalone and 27.28% for grid-connected microgrid systems. It proves more 
precise and efficient, making it the best method for optimization problems. Chaieb and Sakly32 used the Simplified 
Accelerated Particle Swarm Optimisation (SAPSO) combines PSO and Hill Climbing (HC) to achieve a fast, 
simple, and efficient MPPT process with minimal hardware and software requirements. They concluded that the 
SAPSO algorithm reduces the search area using HC and simplifies PSO’s complexity. Mukherjee and Mallick26 
used the adaptive swarm-based metaheuristic for efficient operation of photovoltaic interfaced inverter and they 
found that SAPSO technique could be one of the stops solving approach maximization of power point tracking 
with enhanced accuracy. Similarly, Mukherjee and Mallick33 also examined the levy flight motivated adaptive 
swarm optimization in solving the minimization and maximization of problems. They revealed that APSOLF 
technique have shown significant decrement in percentage of the total harmonic distortion of the inverter output 
voltage and current as per the IEEE standard. Mukherjee et al.34 inferred that premature convergence adaptive 
PSO was improved with better exploitation and exploration of levy flight mechanism. Also, they reported that 

Algorithm Specifications Value

ChOA

f Coefficient vector

r1, r2 Random values

Number of search agents 01

Iterations 08

M Chaotic

Table 15.  ChOA technique tuning parameters.

 

Fig. 29.  Simulation circuit for KC200GT PV module series connection under various shading patterns using 
ChOA algorithm.
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Fig. 31.  Pattern2 simulation results of voltage, current and power using ChOA algorithm.

 

Shading pattern GWPP (W) Type of algorithm Voltage (V) Current (A) Power (W) V0 (V) I0 (A) P0 (W) Efficiency %)

Case-1 544

PSO 130 3.86 503 161.5 3.23 520 95.5

CSO 123 4.10 505 161.6 3.21 521 95.7

GWO 132.018 4.061 543.2 161.23 3.2398 527.443 97.09

TLBO 123.14 4.101 505.0323 159.77 3.217 522.30 95.98

CHOA 132 4.06 543 162.3 3.26 531 97.8

Table 16.  Pattern 1 performance of MPPT controller.

 

Fig. 30.  Pattern1 simulation results of voltage, current and power using ChOA algorithm.
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the levy flight mechanism has shown enhanced convergence with higher accuracy, consistency and robustness. 
Rania et al.35 studied the atom search optimization algorithm and they found better tracking response with 
power harvesting efficiency of 97.9% with rapid convergence. Celikel et al.36 combined the voltage scanning and 
Cuckoo search algorithm to obtain maximum power under partial shading conditions. From their results, they 
inferred that average tracking efficiency and speed were 99.74% and 0.3 s respectively. Belghiti et al.37 introduced 
a novel MPPT approach using Iref and a PID-controlled Quadratic Boost Converter achieves faster convergence 
(< 2 ms), minimal oscillations (< 0.25  W), and 99.79% tracking efficiency, outperforming conventional and 
modern techniques under various conditions.

Function Range fmin

F (X) = 4 X2
1 − 2.1 X4

1+ 1
3 X6

1 + X1X2 − 4X2
1 + 4X4

2 [−5 5] 0.00312

F (x) = 3.5 X2
1 − 2.1 X4

1 + 1
6 X6

1+X1X2 − 6.5X2
1 + 4X4

2 [−5 5] 0.0612

Table 19.  Fixed dimension bench mark functions.

 

Shading pattern GWPP (W) Type of algorithm Voltage (V) Current (A) Power (W) V0 (V) I0 (A) P0 (W) Efficiency (%)

Case-3 513

PSO 160 3.23 503 158.6 3.12 499 97.56

CSO 163 3.22 507 161.8 3.21 503 98.23

GWO 163.68 3.2315 509.33 159.61 3.192 508.61 99.85

TLBO 163.68 3.2315 507.63 161.80 3.255 507.98 99.156

CHOA 164 3.23 509 161 3.20 509 99.99

Table 18.  Pattern 3 performance of MPPT controller.

 

Fig. 32.  Pattern 3 ChOA simulation outputs.

 

Shading pattern GWPP (W) Type of algorithm Voltage (V) Current (A) Power (W) V0 (V) I0 (A) P0 (W) Efficiency (%)

Case-2 440

PSO 134 3.21 428 145.85 2.91 426 96.72

CSO 136 3.25 438 147.16 2.96 434 98.55

GWO 116.57 3.776 440.169 144.7595 2.872 438.61 99.64

TLBO 135.52 3.253 438.63 148.205 2.925 435.88 98.86

CHOA 117 3.77 440 144.82 2.97 439 99.82

Table 17.  ChOA algorithm performance comparison with other techniques.
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Comparative statistical analysis
MATLAB/SIMULINK simulations for PSO, CSO, TLBO and Chimp Optimization Algorithm (ChOA) were 
conducted under different partial shading patterns (G1 to G6). The results, summarized in Table 21, revealed 
that G1 shading pattern maximized power in the solar photovoltaic system.

The performance of diverse algorithms such as PSO, CSO, TLBO and ChoA were compared. From the 
simulation results obtained, ChOA outperformed other algorithms by providing significant objective function 
values with less computational time. In addition, the proposed ChoA approach of maximum power tracking 
resulted in improving the voltage profile and efficiency, which can be adaptable for coping-up the futuristic, 
weather changes. Further in PSO, CSO, and TLBO algorithms, there is no leader to control the entire tracking 
period which can be overcome by Chimp optimization algorithms. ChOA is a highly efficient approach for 

Fig. 33.  Convergence plots of the various techniques for fixed dimension test function.

 

Function PSO GWO ChOA

F (X) = 4 X2
1 − 2.1 X4

1+ 1
3 X6

1 + X1X2 − 4X2
1 + 4X4

2

Mean 1.11E-27 1.15E-27 1.66E-05

SD 1.28E-27 1.99E-25 7.44E-06

Best 6.41E-29 1.87E-27 6.18E-06

Worst 4.75E-25 1.02E-24 3.33E-05

F (x) = 3.5 X2
1 − 2.1 X4

1+ 1
6 X6

1 + X1X2 − 6.5X2
1 + 4X4

2

Mean −1.021628 −1.03162854 −1.02951915

SD 2.69E-06 8.43E-8 0.00802573

Best −1.03156 −1.03162856 −1.0316845

Worst −1.03128 −1.03162485 −0.99998811

Table 20.  Analysis of statistical results on the fixed bench mark functions.
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maximizing solar energy tracking due to its rapid convergence and balanced exploration-exploitation processes. 
Compared to GWO, ChOA exhibits superior capability in tracing global optima and enhancing solar system 
power output. In MATLAB/Simulink simulations with various shading patterns, ChOA demonstrates ease of 
implementation and quicker convergence rates. Comparative analyses with established optimization techniques 
confirm ChOA’s superior performance in GMPP search, minimizing power oscillations around MPP, and 
achieving accurate convergence.

Conclusion
This research aims to improve PV system performance in partial shading using optimization techniques such 
as PSO, CSO, TLBO and ChOA. ChOA’s performance is compared with basic PSO and CSO. From the results 
obtained, ChOA outperformed other algorithms by providing significant objective function values with less 
computational time.

•	 Optimal tracing of LMPP and GMPP towards desired objective function subjected to various operational 
constraints is a non-linear complex problem. In this research, the improved variants of PSO, CSO, and TLBO 
were adopted for solving single-objective functions.

•	 To reach global minima by escaping local minima chances, the exploration and exploitation stages of both 
algorithms are tuned dynamically w.r.t. iteration in the optimization process. The results obtained at all the 
stages are shown that the ChOA outperformed GWO, TLBO, CSO, and PSO.

•	 Comparative analyses with existing optimization techniques confirm ChOA’s superior ability to search for 
GMPP.

•	 Simulation results revealed that ChOA have shown higher conversion efficiency of 99.63% with maximum 
power output of 525.13 W when compared to other optimization algorithms for the given shading pattern 
condition.

Data availability
The data that supports the findings of this study are available within the article.

Different shading pattern Parameter PSO CSO TLBO GWO CHOA

G1=[1000, 900, 800, 700]

Voltage(V) 115.4 117.3 118.43 115.47 115.2

Current (A) 4.31 4.420 4.412 4.52 4.54

Power (W) 497.92 518.35 521.31 521.92 523.14

Max. Power (W) 525.12 525.11 525.13 525.13 525.13

Conversion efficiency (%) 94.82 98.72 99.27 99.38 99.63

G2=[900, 550, 100, 600]

Voltage (V) 82.11 82.45 83.46 83.4 82.61

Current (A) 3.65 3.85 3.849 3.86 3.95

Power (W) 299 317 321.29 321.38 334

Max.Power (W) 330.11 336.62 336.61 336.56 336.65

Conversion efficiency (%) 90.76 94.28 95.44 95.63 99.23

G3=[750, 850, 600, 800]

Voltage (V) 81.26 82.45 83.26 53.21 53.66

Current (A) 3.85 3.96 3.95 6.21 6.24

Power (W) 313.67 325.61 328.87 329.90 334.62

Max.Power (W) 340.05 340.06 340.06 340.07 340.08

Conversion efficiency (%) 92.30 95.81 96.70 97.01 98.42

G4=[600, 800, 400, 200]

Voltage (V) 54.21 54.33 55.62 55.41 56.42

Current (A) 4.02 4.12 4.132 4.21 4.33

Power (W) 217.93 224.11 229.82 233.27 243.59

Max.Power (W) 258.31 258.29 258.29 258.29 258.30

Conversion efficiency (%) 84.45 86.74 88.97 88.97 94.35

G5=[600, 200, 800, 250]

Voltage(V) 64.15 66.31 67.21 65.31 66.45

Current (A) 2.65 2.68 2.68 2.853 2.83

Power (W) 169.31 176.82 180.12 186.13 188.52

Max. Power (W) 191.22 191.19 191.22 191.22 191.21

Conversion efficiency (%) 88.63 92.45 94.19 97.33 98.59

G6=[400, 600, 800, 100]

Voltage (V) 84.25 85.46 85.44 86.46 87.52

Current (A) 2.52 2.63 2.63 2.61 2.62

Power (W) 212.09 223.85 224.75 225.66 229.45

Max. Power (W) 233.12 232.51 232.52 232.52 232.52

Conversion efficiency (%) 91.22 96.29 96.65 97.04 98.69

Table 21.  Simulation results of PV module operated at various partial shading conditions.
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